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 Abstract: In the present paper, we offer a higher-order shear deformation theory for bending of 

functionally graded beam. A new polynomial shear function is used which satisfies the stress-free 

boundary conditions (exact boundary conditions on the stress) at both, top and bottom surfaces of 

the beam. Hence, the shear correction factor is not necessary. Additionally, the present theory has 

strong similarities with Timoshenko beam theory in some concepts such as equations of 

movement, boundary conditions and stress resultant expressions. The governing equations and 

boundary conditions are derived from the principle of minimum potential energy. Functionally 

graded material FGM beams have a smooth variation of material properties due to continuous 

(unbroken) change in micro structural details. The variation of material properties is along the 

beam thickness and assumed to follow a power-law of the volume fraction of the constituents. 

Finite element numerical solutions obtained with the new polynomial shear function are presented 

and the obtained results are evaluated versus the existing solutions to verify the validity of the 

present theory. At last, the influences of power law indicator and the new shear deformation 

polynomial function on the bending of functionally graded beams are explored. 
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1. Introduction 

The concept of FGM was developed by Japanese material 

scientists in 1984 for super heat-resistant materials to be used in 

space planes. Functionally Graded Materials (FGMs) are 

microscopically inhomogeneous composites that are frequently 

made from a mixture of metals and ceramics. They are a class of 

composites that have continuous variation of material properties 

from the top and the bottom surfaces, of a beam structure for 

example, and thus eliminate the stress concentration at the 

interface of the layers found in laminated composites. The 

combination of different materials with specific physical 

properties permits an adapted material design that extends the 

structural design space by implementing a multi-functional 

response with a minimal weight increase.  

Figure 1 presents a FGM beam structure in which the material 

changes gradually from full metallic at the bottom to full ceramic 

at the top. The metallic area is used to withstand the mechanical 

loads, while the ceramic one acts as thermal protection. Owed to 

growing of FGM applications in engineering structures, various 

beam theories have been developed to predict the response of 

functionally graded beams. The first one is the Classical Beam 

Theory (CBT) recognized as Euler-Bernoulli Beam Theory (EBBT) 

(Euler 1744). It is the simplest one and is applicable to slight 

beams only. For moderately thick beams, the CBT underestimates 

deflection and shear stress due to ignoring the transverse shear 

deformation effect (Yang 2008, Simsek 2009 and Alshorbagy 

2011); this is the reason why it is not applicable for thick beams. 

The second beam theory is the First-order Shear Deformation 

Beam Theory (FSDBT). It is recognized as Timoshenko Beam 

Theory (TBT) (Timoshenko 1921, 1922). It has been proposed to 

overcome the limitations of the CBT by accounting the transverse 

shear deformation effect. Since the FSDBT violates the zero shear 

stress conditions on the both, top and bottom surfaces of the 

beam. The reason why a shear correction factor is necessary to 

account for the divergence between the real stress state and the 

assumed constant stress state (Chakraborty et al. 2003, Li 2008, 

Sina 2009 and Wei 2012). 

To keep away from the use of the shear correction factor and to 

have a better prediction of beam response; higher-order shear 

deformation theories (HSDT) have been developed and proposed 

by many authors; liking the third-order theory of Reddy (TTR) 

(Reddy 1984, Wang 2000 and Yesilce 2009, 2010, 2011), the 

hyperbolic theory of Soldatos (1992), the sinusoidal theory of 

Touratier (1991), the exponential theory of Karama et al. (2003, 

2009), and the unified formulation of Carrera (2003) and Carrera 

et al. (2011).  

Aydogdu (2006 & 2009) presented a study in which he compared 

the different theories of higher order (Parabolic Shear 

Deformation Theory PSDT, Trigonometric Shear Deformation 

Theory TSDPT  and  Exponential  Shear Deformation  ESDPT) with 
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Fig. 1. An example of FGM beam Structure 

the elasticity theory of three-dimensional. The author has shown 

that the transverse displacement and stresses are better 

predicted by ESDPT compared to other theories. 

Generally, in order to increase the accuracy of the results, an 

increase in the degree of the polynomial of the kinematic 

equation may be an alternative. 

 U�(M, t) = U�(M�, t) + zw �
(�)(M�, t) + z�w �

(�)(M�, t) +

z�w �
(�)(M�, t) + ⋯,  (1) 

where, z is the normal coordinate. 

This technique is not adopted by researchers because of its high 

cost in terms of calculation. In this context, several simplifications 

have been proposed to reduce the number of displacement 

parameters. One of these simplifications is introduced to shorten 

the last terms of the Taylor series of the "shear function". The 

form of the proposed movement through the thickness is as 

follows: 

u(x, z) = u�(x) − z
���

��
(x) + f(z)θ�(x) (2) 

w (x, z) = w �(x) (3) 

�(�) can be considered as the shearing function to determine the 

distribution of strain and transverse shear stress through the 

thickness. According to this function f(z), we can distinguish some 

models of important higher order in the literature that are 

described in Table.1. 

Higher-order shear deformation theories can be developed based 

on the assumption of a higher-order variation of axial 

displacement through the thickness of the beam (Aydogdu and 

Taskin 2007, Kadoli et al. 2008, Simsek 2009, Ben-Oumrane 2009, 

Li 2010, Simsek 2010 and Wattanasakulpong 2011) or both axial 

and transverse displacements through the depth of the beam (i.e. 

via the use of a unified formulation) (Giunta et al. 2010a, 2010b 

and 2011). In the present paper, we attribute a higher-order 

shear deformation beam theory for FGM bending beams. This 

later is based upon a new polynomial shear function that satisfies 

the zero traction boundary conditions on the top and bottom 

surfaces of the beam, thus a shear correction factor is not 

necessary.  In addition, the present theory has burly similarities 

with the Beam Theory CBT in a many expressions such as 

equations of motion, boundary conditions, and stress resultant 

expressions.  

Material properties of FG beams are supposed to vary according 

to a power law distribution of the volume fraction of the 

constituents. Equations of motion and boundary conditions are 

derived from the principle of minimum potential energy. 

Numerical examples are presented to display the validity and 

accuracy of the present shear deformation theory and to show 

the effects of power law index and shear deformation on the 

bending of FG beams explored. Numerical solutions for bending 

are obtained for a many beams solicited by different forces. 

2. Material properties of FGM beam and the neutral axis 

2.1. Effective material properties of metal ceramic functionally 

graded beams 

Figure 2 presents an FGM beam composed of ceramic and metal 

of length L, width b and thickness h. Material properties vary 

continuously and non-uniformly in the z direction. Top surface 

consists of only ceramic and the bottom surface has only metal. 

In between volume fraction of ceramic V� and metal V� are 

obtained by power law distribution in conjunction with simple 

law of constituent mixture as follows: 

V� = �
�

�
+

�

�
�

�
 (4) 

V� = 1 − V� (5) 

where, z = distance from neutral axis and p = power law index, 

the non-negative variable parameter which dictates the material 

variation profile through the thickness of the beam a positive real 

number. The value of p=0 represents a pure ceramic beam; if p is 

infinite the beam is entirely metallic, for p=1 the variation of the 

combination of metal and ceramic is linear and when the value of 

p is increased, content of metal in FGM increases. 

The variation of the ceramic volume fraction in the thickness 

direction of the FGM beams as a function of different values of p 

is illustrated in Fig. 3. 

Table 1. Different shear functions 

Shear Functions Authors 

�(�) =
�

2
�

ℎ�

4
−

��

3
� Ambartsumyan 1958 

�(�) =
5�

4
�1 −

4��

3ℎ�
� 

Kaczkowski 1968, Panc 

1975 and Reissner 1975 

�(�) = � �1 −
4��

3ℎ�
� 

Levinson 1980, Murthy 

1981 and Reddy 1984 

�(�) =
ℎ

�
��� �

��

ℎ
� 

Levy 1877, Stein 1986 

and Touratier 1991 

�(�) = ℎ��� �
�

ℎ
� − ����ℎ �

1

2
� Soldatos 1992 

�(�) = ze��(� �)⁄ �

 Karama et al. 2003, 2009 

�(�) = ���(��/ℎ) Ferreira et al. 2005 

�(�) = zα��(� �)⁄ �
/��α , α > 0 Aydogdu 2009 

�(�) = ����(� �)⁄ �

 Mantari et al. 2011 

�(�) = ���(�� ) Mantari et al. 2012a   

�(�) = ���(��/ℎ)��  ���(�� �⁄ ) Mantari et al. 2012b   

�(�) = ��� �
�

ℎ
� ��  ����(� �⁄ ) Mantari and Soares 2012 

�(�) = ���ℎ�� �
��

�
� − �

��

�√����
  , r = 3 Grover et al. 2013 

�(�) = ����� �
��

�
� −

��

�(�����)
 , � = 0.46 Sahoo and Singh 2013 
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Fig. 2. Geometry of FGM beam and the possible variation of ceramic and 

metal through thickness 

 

Fig. 3. The variation of the ceramic volume fraction in the thickness 

direction. 

The effective material properties MP��� are evaluated using the 

relation: 

MP��� = MP� V�(z) + MP� V�(z) 0 (6) 

Where, MP�  and MP�  stands for material properties of metals 

and ceramics respectively. Thus the modulus of elasticity E���, 

Poisson’s ratio ν���, and shear modulus G���, of FGMs can be given 

by: 

E��� = (E� − E�) �
�

�
+

�

�
�

�
+ E�  (7-a) 

ν��� = (ν� − ν�) �
�

�
+

�

�
�

�
+ ν� (7-b) 

G��� = (G� − G�) �
�

�
+

�

�
�

�
+ G�  (7-c) 

Using the above relation it is possible to obtain an approaching 

into the variation of the material properties across the thickness 

of the beam for different power law indexes. Figures 4 illustrate 

the variation of Young’s modulus, Poisson’s ratio and shear 

modulus of an FGM beam. 

It has been confirmed by Delale (1983) and Ziou et al. (2016) with 

an energetic method that the variation of the Poisson coefficient 

does not have much influence on the evaluation of deformation. 

Therefore, we kept the same Poisson coefficient for both 

materials. 

2.2 Position of the neutral axis 

Before the resoluteness of a desirable solution, the position of 

the neutral axis must be known. Visibly, due to varying of 

material properties of the beam (the Young’s modulus precisely), 

the neutral axis is no longer at the midline, but moved from the 

midline except for a beam with symmetrical Young’s modulus. To 

determine the position of the neutral axis, we construct a new 

coordinate system such that the new x axis is positioned at the 

neutral axis, which will be determined as follow. Subsequently we 

have:  

x = x′       z = z′+ h� (8) 

 

(a) Young's Modulus E (z) 

 

(b) Poisson's ratio ν (z) 

 

(c) Shear Modulus G (z) 

Fig. 4. Variations of Young’s modulus, Poisson’s ratio and Shear 
modulus of an FGM beam along the thickness for various power law 

indexes. 
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Where, h0 is the distance between the neutral axis and midline of 

the beam. In this case and similarly to the usual treatment in the 

Euler-Bernoulli beam theory (EBBT), we can directly write: 

ε�� = −z′
���

���
  and σ�� = E(z�) ε�� (9) 

Where w is the deflection of the FGM beam. The position of the 

neutral axis can be determined by choosing h0 such that the total 

axial force at the cross-section becomes zero: 

∑ F� = 0∫ σ��

�

�
���

���
�

�

 dA = 0 (10) 

Substituting equation (8) jointly with (9) into (10) result in  

∫ b. E(z�).
�

�
���

����
�

�

z�.
���

��� dz′ = 0 (11) 

With changing the interval of the integral, we obtain: 

∫ b. E(z�).
�

�

�
�

�

(z− h�).
���

���
dz = 0 (12) 

Then  

b.
���

��� �∫ E(z). z. dz−
�

�

�
�

�

h� ∫ E(z). dz
�

�

�
�

�

� = 0 (13) 

The position of the neutral axis becomes 

h� =
∫ �(�).�.��

�
�

�
�
�

∫ �(�).��
�
�

�
�
�

  (14) 

With 

D��� = b ∫ E(z)dz = bh �E� +
�����

���
�

��/�

��/�
 (15-a) 

D��� = b ∫ E(z)zdz=
���

�
(E� − E�)

��/�

��/�
�

�

(���)(���)
� (15-b) 

D��� = b � E(z)z�dz
��/�

��/�

=
bh�

12
�3(E� − E�)

p� + p + 2

(p + 3)(p + 2)(p + 1)
� 

 (15-c) 

The substitution of the equation (15-a) and (15-b) into equation 

(14) gives  

��

�
=

(�����)
�

(���)(����)

���
�����

���

 (16) 

The value of p that maximizes the function h0/h is given by: 

p = �2
��

��
  (17) 

3. Kinematics and stress-strain relations 

Let us consider a straight beam of length L and axis x linking the 

gravity centers G of all cross-sections with x-z being a principal 

plane of inertia. Here, the coordinate axes are chosen such that 

the x-axis is oriented in the axial direction at the mid-line of the 

unbent beam, and the positive z-axis is directed upward and 

perpendicular to the x-axis, as shown in Fig. 5. 

The cross-section is formed by an FGM composite material. 

Hence, in general the beam axis does not coincide with the 

neutral axis. The loads are vertical forces and bending moments 

contained in the x-z plane as usual for plane beams. Bending on 

the plane y-z will not be considered here. Timoshenko hypothesis 

for the rotation of the normal to hold will be assumed. The axial 

and vertical displacements of a point A of the beam section are 

expressed as  

u(x, z) = u�(x) − z
���

��
(x) + f(z)ψ�(x) (18-a) 

w (x, z) = w �(x) (18-b) 

Where: 

- f(z)ψ�(x)  is the warping function. 

-  u(x, z) represents the longitudinal displacement of any points 

at the transverse section. 

w0 is the transverse deflection of the beam along the z-axis, 

 u�(x) = u(x, z = 0) is the longitudinal displacement at the mid-

line of the beam down the x-axis. 

f(z) is the new shear function adopted in the present study. 

f(z) = z�
�

�
−

���

���� = z�
�

�
−

�

�
�

�

�
�

�
� =

�

�
z−

���

���  (19) 

f �(z) = �
�

�
−

���

���� (20) 

f ��(z) = − �
��

��� (21) 

For the classical beam theory CBT (Euler-Bernoulli beam theory 

EBBT): f(z) = 0, and for the First-order Shear Deformation Beam 

Theory FSDBT (Timoshenko beam theory TBT): f(z) = z. 

Where ψ�(x) is the shear strain at the mid-line of the beam. 

ψ�(x) = γ��(x, z = 0) (22) 

The nonzero components of the strain tensor are: 

ε�(x, z) =
���

��
− z

���

��� + f(z)
���

��
  (23) 

γ��(x, z) =
��

��
. ψ� (24) 

f �(z)  is equal zero at both, top and bottom fiber,(z = h ⁄2�
�   ) 

which implies the nullity of the shear stress at theses fibers. It is 

clear that f ��(z) is equal zero at z=0. Thus implies that the shear 

stress is maximal at the midline fiber. 

 
Fig.5. A functionally graded beam element in their axis 
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Introducing the f(z) function at the equation (18-a), we obtain: 

u(x, z) = u�(x) − z
���

��
+ �

�

�
z−

���

���
� ψ� (25-a) 

u(x, z) = u�(x) − z�
���

��
−

�

�
ψ�� +

���

���
ψ� (25-b) 

The equation (25) has the same form of the equations used per 

different authors as Levinson (1980), Murthy (1981), Reddy 

(1984), for higher-order shear deformation theories (HSDT):  

u(x, z) = u�(x) + zu�(x) + z�u�(x) + z�u�(x) (26) 

Because the shear stress is zero on the two fibers of the beam 

(z = h ⁄2�
�   ). The relation between the shear strain and stress 

indicate that the shear strain also must vanish. After that, it is 

clear that u�(x) must equal zero. So, the equation (26) must be: 

u(x, z) = u�(x) + zu�(x) + z�u�(x) (27) 

Simple to derivate, simple to integrate and simple to program in a 

finite element code. 

In the present analysis and for simplicity, the beam deflection w 

is assumed independent of the thickness, which is frequent and 

true enough in classical and higher-order theories for analysis of 

beams (Savoia 1996).  

To develop the final governing equation, initially, taking into 

account the shear traction-free boundary condition at the beam 

extreme lines (fibers), shear deformation γ��(x, z) gets the form: 

γ��(x, z) =
��

��
. ψ� = �

�

�
−

���

���� ψ� (28) 

Where ψ� is shear strain at the mid-line of the beam. It is noted 

that there are further expressions which would satisfy the 

necessary boundary conditions. 

Equation (19) is, yet, one of the simplest expressions; because; it 

is a polynomial function characterized by: It is continuous and 

regular function 

At the present, we introduce the rotation angle of cross-section 

perpendicular to the mid-line as θ=
��

��
 when z = 0, 

consequently, we have: 

ψ�(x) = θ+
��

��
  (29) 

So, the normal strain ε�(x, z) =
��

��
 can be expressed in terms of 

the transverse deflection w and the rotation of the section by: 

ε�(x, z) =
���

��
− z

���

��� + �
��

�
−

���

����
��

��
+ �

��

�
−

���

����
���

���   (30-a) 

γ��(x, z) =
��

��
. ψ� = �

�

�
−

���

���� �θ+
��

��
�  (30-b) 

It is clear that if z = 0 the axial strain is equal to ε�(x, z) =
���

��
 

4. Numerical Results 

Let us consider an FGM beam with a rectangular cross-section. 

The dimensions of the section are: h=0.1m and b=h/100=0.001m. 

The beam has a length L. Two cases are considered; the span to 

height ratio L/h is as high as 100 (for the slender beam) and as 

low as 5 (for deep beam). Young’s modulus is graded according to 

the power law (see equation (7-a)). With Ec=10000 GPa and 

Em=Ec/10=1000 GPa. The Poisson ratio is equal to 0.25. The 

beam undergoes a uniform pressure equal one Pa applied at top 

fiber. The non-dimensional quantities used here are 
��

��
= 10 , 

��

��
= 10. 

The deflection of the beam is shown in (Fig. 6) and (Fig.7) for 

various power law exponent, p and for different length-to-

thickness (L/h=100, L/h=5 respectively). For FGM beam, 

transverse deflection increases as power law exponent p is 

increased. As seen from (Fig .8) and (Fig. 9) the axial stress 

distribution is linear for full ceramic and also the values of 

tensile and compressive stresses are equal for isotropic beam 

(full ceramic).  

4.1. Case 1: Thin beam for L/h=100 

 
Fig. 6. Variation of transverse deflection w with respect to the power law 

index p for FGM beam under uniform load (L/h=100). 

4.2. Case 2: Thick beam for L/h=5 

 
Fig.7. Variation of transverse deflection w with respect to the power 

law index p for FGM beam under uniform load (L/h=5) 

 
Fig.8. Variation of axial normal stress across the depth of FGM beam 

under uniform load (L/ h=100). 
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Fig.9. Variation of axial normal stress across the depth of FGM beam 

under uniform load (L/h=5). 

For other values of p, the axial stress distribution is not linear 

and also the values of compressive stresses are greater than 

tensile stresses. The value of axial stress is zero at the mid-

plane but it is clearly visible that the values of axial stresses 

are not zero at the mid-plane of the FG beam for the other 

values of p; it indicates that the neutral plane of the beam 

moves towards the upper side of the beam for FG beam. This 

is due to the variation of the modulus of elasticity through the 

thickness of the FG beam.  

Figures 10 and 11 depicts the variation of the shear stress 

across the thickness of beam for different length-to-thickness 

(L/h=100, L/h=5 respectively) with different higher order 

shear deformation theory at x=0. It can be observed that the 

curves obtained using the new shear deformation beam 

theory are in good agreement with those given the other 

beam theories (Kaczkowski 1968 and Levinson 1980) for all 

values of power law index p and span-to-depth ratio L/h. 

5. Conclusion 

We developed a new higher-order shear-deformation beam 

theory for bending of functionally graded beams. The 

developed theory account for higher-order variation of 

transverse shear strain through the depth of the beam, and 

satisfy the stress-free boundary conditions on the top and 

bottom surfaces of the beam. The shear correction factor is 

not required.  

In addition, finite element numerical solutions obtained with 

the new polynomial shear function are presented. This new 

function has strong convergence with the other higher order 

shear-deformation beam theories (Kaczkowski 1968 and 

Levinson 1980) for various power law exponent p and for 

different length-to-thickness. In general, all shear 

deformation beam models give different results, for the case 

of transverse shear stress. The different transverse shear 

strain shape functions used in each models can explain it. 

 

 

 

Fig.10. Variation of transverse shear stress across the depth of FGM beam under uniform load for different higher order shear deformation theory at 
(x=0) (L/h=100). 
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Fig.11. Variation of transverse shear stress across the depth of FGM beam under uniform load for different higher order shear deformation theory at 

(x=0) (L/h=5). 
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Appendix –A-The FGM Beam Element 

For an FGM beam with constant section and unloaded, the 

two equilibrium equations are: 
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A.1. Axial stiffness 

The axial stiffness matrix K is: 

[K�] = b ∫ E(z)dz �
1/L −1/L

−1/L 1/L
�  (A2) 

A.2. Beam element 

The stiffness matrix [K] for the simple beam element is 

[K] = [K�] + [K�] =

b ∫ E(z)z�dz [B�]
�[B�]dx + bK� ∫ G(z)dz[B�]�[B�]dx
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A.2.1. Bending stiffness 
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A.2.2. Shear stiffness 
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K�  and K� are elementary matrix calculated by integration 

over the geometry of an element because their expressions 

have a polynomial forms : 

[K] =
D�b
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A.2.3. Coupling axial-bending stiffness 

K�� = − � E(z)
∂δu�

∂x
 z 

∂θ

∂x
dv� 

The coupling matrix is defined by the equation below: 
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Combining the axial stiffness (bar element), we obtain the 

stiffness matrix of a general 2-D beam element. 
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From the equilibrium equation, we deduce: 

θ�(x) =
∂w

∂x
+ c 

Alternatively, c is integration constant of the equilibrium 

equation: 
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With ɸ� =
����

�����
  

ɸ� is a coefficient which characterizes the transverse 

deformations. It depends on both the geometry and material 

characteristics of the section. 

 


