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Bifurcations in two-dimensional differentially heated cavity
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Abstract: In this work, we propose a numerical analysis of a bidimensional instationary natural
convection in a square cavity filled with air and inclined 45 degree versus to horizontal. The vertical
walls are subjected to non-uniform temperatures while the horizontal walls are adiabatic. The
equations based on the formulation vorticity-stream function are solved using the Alternating
Directions Implicit scheme (ADI) and Gauss elimination method. We analyze the influence of

Rayleigh number on the roads to chaos borrowed by the natural convection developed in this
cavity, and we are looking for stable solutions representing the nonlinear dynamic system. A
correlation between the Nusselt number and the Rayleigh number is proposed. We have analyzed
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1. Introduction

The natural convection of Newtonian fluids confined in
differentially heated enclosures have attracted considerable
attention from researchers in recent years, because of their wide
range of applications in thermal engineering, such as solar
collectors, electronics, the cooling facilities, the solidification
process, and in buildings. The mastery of the appearance of
chaotic phenomenon is an interesting and important phase for
industrial applications; it can be controlled and especially taken
into account in the technical designs. For this, it is interesting to
study the chaotic phenomena and effects of various parameters
of flow and heat transfer. In general these phenomena are
characterized by thermal and hydrodynamic instabilities and the
transition is converted into a periodic system. Natural convection
induced into a square recesses of which the vertical walls are
differentially heated, has been extensively studied and developed
(De Vahl Davis 1983; Paolucci and Chenoweth 1989; Ivey 1984;
Patterson 1984; Ndamne 1992). A numerical study has been
developed by (Wakitani 1997) on the multicellular solutions for a
wide range of Rayleigh numbers, and showed that the flow
structure is depending on the initial conditions. Other researchers
are interested in exploring the routes to chaos and in particular,
the temporal sequence of bifurcation to chaos Bifurcation
method is a tool for numerical analysis of the stability of dynamic
systems and nonlinear effects. These methods were introduced
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by Jahnke and Culick (2011). The nonlinear behavior can best be
understood in terms of bifurcation of the dynamic system.

This dynamic system represents all critical points where balances
undergo a change in their stability. Many roads to chaos in
natural convection were found theoretically and experimentally
(Manneville and Pomeau 1980; Behringer 1985; Feigenbaum
1980; Mukutmoni and Yang 1993a; Bratsun et al. 2003;
Mukutmoni and Yang 1993b). The case of natural convection in a
cavity was developed by D’Orazio et al. (2004) who have used the
algorithm SIMPLE-C to solve the equations of energy, movement,
and continuity. Studies of the effect of the various values of
aspect ratio have detected the presence of either a regular cell,
or two regular cells, or two periodic cells, or finally three periodic
cells. At each bifurcation abrupt, changes of the Nusselt number
were observed. Works of (Mizushima and Hara 2000) on the
horizontal and vertical cavities have shown that for the horizontal
cavity, thermal convection occurs over a number of critical
Rayleigh due to instability, while for the vertical cavity heated
from a wall, natural convection occurs for small Rayleigh numbers
and has a unicellular global circulation. Exploring multicellular
convection when the vertical cavity is gradually inclined from the
horizontal plane was examined by an analysis of bifurcations.
Finally, a numerical investigation on unsteady natural convection
was devoted to the multiplicity of solutions for an aspect ratio of
cavity equal to 1 (Aklouche-Benouaguef et al. 2014). The different
stable solutions obtained were represented by attractors in
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phase spaces. These attractors were characterized by their fractal
dimension. The study highlighted the scenario to chaos and also
explains the divergence of two very close initial solutions by
determining the Lyapunov exponent. The objective of this
present work is to show that for a tilted square cavity, a dynamic
system leads to a deterministic chaos. We analyze the vicinity of
the first critical point for looking for different solutions
representing the stable dynamic system, and attempting to
establish a correlation between the number of Nusselt and
Rayleigh number.

2. Mathematical Formulation
2.1 Mathematical model

Figure 1 shows the two-dimensional geometry of a square cavity
filled with air and inclined (45 degrees). The horizontal walls are
adiabatic and the vertical walls are brought to non-uniform
temperatures: the lower half portion of the wall is hotter than
the upper half portion. The fluid properties are assumed to be
constant except for the density in the term of the thrust
Boussinesq approximation. The two-dimensional flow is
considered laminar while the viscous dissipation in the energy

equation and thermal radiation between the walls is negligible.
2.1.1 Adimensional Equations

The scaling height, time, and velocity are set dimensioneless H, H
/ az, and H / a, respectively. The dimensionless equations of the
stream function, vorticity and energy equation are written as
follows.

Vorticity equation

2 2
Oty 2 g (1)

ox? oy?

Momentum equation

d—Q+i U.Q—Pr@ +
dt  ox ox
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Fig .1. Physical system.

Heat transfer equation

d—T+i UT—ﬂ +i V.T—ﬂ =0 (3)
dt  ox OX oy oy
where

x=x'/H,y=y'/H,u=u'H/a, v=v'H/a,

Q=Q'H?/a,t=t'a/H?, ‘P:‘P'/a,T =(T=7,)(T.-T/) “

2.2. Initial and boundary conditions

Initial conditions: Fort <t;, t, being the time from which the

vertical walls are subjected to non uniform temperatures.
Uu=v=p=Q=0, T=0 (5)
Boundary conditions:

for t >t vertical walls: x=0 and x=1

o*Y
ox?

O<y<l:u=v=yp =0, Q=- (6)

O<y<y2: T=1
1/2<y<1l: T=0 (7)
y=1/2: T(x1/2)=05

Horizontals walls: y =0 and y=1and 0<y<1

L

E 0 (8)

u=v=y =0,

2.3. Nusselt number

The global Hot Nusselt number (Nu ;) and the global Cold
Nusselt number (Nu ..4) are defined by:

_oT oT
I( T ax)xovdyjf( Tax)xlydy

Nu,,, (9)
o p _Tm p _Tm
! (6T ) . (aT ) y
Nugy,, = Mo 4 Ny g (10)
Ucolg J; T, T, y +1}‘; T -, y

T, is the average temperature of the fluid in the cavity. Its
expression is:

Nx, Ny .
> TG J)
T,=—d (11)
N, N,
N, and Ny are the node numbers along [ox) and [oy) axis

2.4 Numerical Methodology

The discretization, using the alternating directions implicit
scheme (ADI) of equations (2) and (3) associated to the boundary
conditions (6-8), leads to algebraic equations systems which can
be written as tridiagonal matrices. These systems are solved by
Gauss elimination method and an iterative procedure. The
vorticity equation is solved by an implicit numerical scheme and a
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successive over relaxation method. For each time step, the
convergence is assumed to be reached for the k-th iteration
when the criterion defined by (12) is verified.

3 ZZ| fif(;1 - fif(J|
axX ——————— < epsilon (12)

n;]:l ZZ| fi?(jﬂ

where epsilon is less than or equal to 10” for the Poisson
equation (1) and less than or equal to 10°® for the equations of
vorticity and energy. The expression of the frontiers vorticity is
inferred from Woods (1954) approximations:

1
Q,= -3 Q,+1- 3 (¥, +1-¥,)/An? (13)

Where p is the wall and An is the space step along the normal to
the wall. The average Nusselt numbers were computed using the
Simpson rule of the local Nusselt number.

3. Validation and Results
3.1 Validation

We validated our numerical code with the benchmark solution of
De Vahl Davis (1983) and experimental results of Ndamne (1992).
Our results are in good agreement with those of De Vahl Davis
(1983). In addition, the discrepancies between our results and
experimental results of Ndamne (1992) (Figure 2) are inferior to
0.6% for the temperature. Our numerical code is validated. A grid
sensibility analysis has been also performed. The sensitivity to the
mesh was made by considering the mesh that has the smallest
relative error.

3.2. Non linear analysis

The stationary solution is obtained for a Rayleigh number equal
to 10°. This solution is represented in a phase space, a
geometrical object called gravity point limit (Figure 3). This
attractor is a spiral that tends to a fixed point, reflecting the
regression of the effects of nonlinearity. The time evolution of
this endpoint is characterized by a damping of the amplitudes
over time (Figure 4).

The Fourier spectrum for the stationary solution shows no
frequency. The geometric shape of attractor is changed for a
critical Rayleigh number equal to 3.994 10°. It represents the first
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Fig.2. Validation with Ndamne (1992).
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Fig.4. Temporal evolution: Stationary solution.

bifurcation from the steady state to the oscillatory state. To
characterize the first bifurcation, it is necessary to conduct a
study in the vicinity of the critical point. For this purpose, we
plotted the curves showing the variation of the amplitude of a
dynamic parameter as a function of Rayleigh number, then

cr)1/2. Figure 5 shows the

depending on the amount of (Ra-Ra
evolution of the square of the amplitude of the hot Nusselt
number and the stream function with the Rayleigh number.
These curves show that the separation point corresponds to the
critical Rayleigh number obtained graphically. This allows us to
assess the relative error between the value found from code and
from the plot graph is very small, of the order 0.062%. The curve
(dashed lines) is the amplitude (Amplitude®) of the signal
obtained from the Fourier transform of the temporal evolution of
the stream function depending on the Rayleigh number. It is the
same for the curve (solid lines) is the signal amplitude of the
temporal evolution of the hot Nusselt number.

Figure 6 shows the linear development of the amplitude of a
dynamic parameter such as the Nusselt number as function of
the difference (Ra-Racr)l/2
of the first bifurcation which is a Hopf bifurcation. The results
show that the periodic system settles for a Rayleigh number

. This linearity characterizes the nature

equal to 3.994. 10°. We represent the spectrum amplitude of the
oscillatory solution (Figure 7) and the attractor limit cycle (Figure
8). The birth of the limit cycle is confirmed in the power spectrum
by the appearance of an energy frequency that is relatively zero
amplitude. This is consistent with results from the literature
(Berge et al. 1998).
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The frequencies of the stationary solution are obtained using the
fast Fourier transform with a spectral resolution of less than 0.2.
It appears that the frequencies become sensitive to space and
time when the Rayleigh number increases, although the
amplitudes are less sensitive than the frequencies. The first fork
being characterized, the other bifurcations are determined by the
research of stable solutions in non-stationary.

The calculations helped to highlight six stable solutions
corresponding to the Rayleigh numbers: 4.2x10°, 4.3x10°,
4.4><105, 4.7><105, 4.8x10° and 4.9x10°. These Rayleigh numbers
were determined by studying the sensitivity of the frequency to
mesh and time step. The mesh from which the frequency is stable
is considered. It is the same for the time step. We represent the
phase portrait (Figure 9) and the amplitude spectrum (Figure 10)
for the periodic stable solution corresponding to the Rayleigh
number equal to 4.9x10°.

The stationary and periodic solutions are precocious compared to
the horizontal cavity (result compared to the previous working
(2014)).
convection to a Rayleigh number Ra = 3x10° leads to chaos. The
figure 11 shows the appearance of chaos.

(Aklouche-Benouaguef et al. Intensified natural

3.3 Correlation between the Nusselt number and the Rayleigh
number

Figure 12 shows in logarithmic representation, the evolution of
the Nusselt number of hot depending on the Rayleigh number.
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The resulting curve presents two parts: A portion where the
regime is conductive with: Nup, ~ 0.2075. The second part,
relating to the convective regime, an upward space can be

correlated by the following expression Nuy,.= 0.5925xRa’#%,

4. Conclusion

A numerical study was conducted on natural convection in a
square cavity containing air and inclined at an angle a = 45. The
developed computer code was validated with some theoretical
and experimental results published in the literature. A stability
study was done. The search of the mesh and time for each
Rayleigh number led to the determination of the optimum mesh
size and time step. The stationary solution, represented by a
spiral, characterizes the regression of the effects of non-linearity
of the equations representing physical system. This study showed
that the flow in the cavity undergoes bifurcation sequences of
the stationary state to a convective oscillatory state. The study in
the vicinity of the critical point has allowed characterizing the
nature of the first Hopf bifurcation. Stable solutions are unsteady
in the nonlinear dynamic system. These are the solutions that are
useful for calculating the fractal dimension of the attractor. The
stationary and periodic solutions are precocious compared to the

horizontal cavity (result compared to the previous working
(Aklouche-Benouaguef et al. (2014)). This system undergoes a
deterministic chaos. The roads used by natural convection in the
cavity move towards the scenario of chaos which is probably
almost periodicity
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