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Abstract: The population balance equation has numerous applications in physical and engineering
sciences, where one of the phases is discrete in nature. Such applications include crystallization,
bubble column reactors, bioreactors, microbial cell populations, aerosols, powders, polymers and
more. This contribution presents a comprehensive investigation of the semi- analytical solutions of
the population balance equation (PBE) for continuous flow particulate processes. The general PBE
was analytically solved using homotopy perturbation method (HPM) and variational iteration
method (VIM) for particulate processes where breakage, growth, aggregation, and simultaneous
breakage and aggregation take place. These semi-analytical methods overcome the crucial
difficulties of numerical discretization and stability that often characterize previous solutions of the
PBEs. It was found that the series solutions converged exactly to available analytical steady-state
solutions of the PBE using these two methods.
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1. Introduction

The population balance equation (PBE) is used to model the
particulate processes in various engineering fields such as
crystallization (Ma et al. 2007; Gunawan et al. 2004), granulation
(Ning 1997; Hapgood et al. 2009; Eggersdorfer and Pratsinis 2014;
Chaudhury et al. 2013), polymerization (Yao et al. 2014; Ziff and
McGrady 1985; Blatz and Tobolsky 1945), chemical engineering
(Hulburt and Katz 1964; Randolph and Larson 1988), aerosol
(Jacobson 2002), and biological (Srienc 1999). These processes
are characterized by the presence of a continuous phase and a
dispersed phase composed of particles with a distribution of
properties. This makes studying (PBE) systems an active area of
research.

In Ramkrishna 1985; Kostoglou and Karabelas 1994; Kumar and
Ramkrishna 1996a,b; Kumar and Ramkrishna 1997; Attarakih
2013 and Santos et al. 2013 a series of papers on the available
numerical methods were discussed up to the mid-eighties to find
efficient and stable numerical methods for solving the population
balance equation, such as the fixed- and moving pivot methods,
Dual Quadrature Method of Generalized Moments
(buQMoGeM), and Cumulative Quadrature Method of Moments
(CQMOM). In recent years, some powerful and simple methods
have been proposed and applied successfully in mathematical,
physical and engineering problems to approximate various types
of partial differential equations or integral equations, for
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example, the Adomian decomposition method (Adomian 1994;
Adomian and Rach 1986; Wazwaz 2009), the homotopy
perturbation method (He 1999a, 2000, 2004, 2005a,b) and the
variational iteration method (He 1997, 1998a-b, 1999b, 2006).
Furthermore, until now there are no semi analytical techniques
for steady state population balance equations have been
presented in the literature. The main advantage of the
techniques are the most transparent methods of solution of
(PBEs) because they provide immediate and visible symbolic
terms of both analytical and numerical solutions to linear as
well as nonlinear integro-differential equations without
linearization or discretization. The variational iteration method is
now widely used by many researchers to study linear and
nonlinear problems and it is based on Lagrange multiplier. The
homotopy perturbation method has been used by many authors
to handle a wide variety of scientific and engineering applications
to solve various functional equations and it has the merits of
simplicity and easy execution. In these methods, the solution is
considered as the sum of an infinite series, which converges
rapidly to accurate solutions. In spite of its rapid successive
approximations of the exact solution, the Adomian
decomposition method suffers from the complicated
computational work needed for the derivation of Adomian
polynomials for nonlinear terms.The steady state population
balance equation (PBE) for a continuous well-mixed particulate
system represents the net rate of number of particles that are

This work is licensed under a Creative Commons Attribution 3.0. License (CC BY 3.0) http://creativecommons.org/licenses/by/3.0/
JOURNAL OF APPLIED ENGINEERING SCIENCE & TECHNOLOGY | JAEST - ISSN 2352-9873 (PRINT) | SECTION E: CHEMICAL AND PROCESS ENGINEERING

Available online at http://revues.univ-biskra.dz/index.php/jaest



72 Hasseine et al. / J. Appl. Eng. Sci. Technol.

Nomenclature

a mean residence time, [s]

n,(V) solution components, e

n(v)dv number of particles of size range v to v+dv, [L'3]
v,u particle volume, [L3]

Abbreviations

caMoM cumulative quadrate method of moments
DuQMoGeM dual quadrature method of generalized moments
HPM homotopy perturbation method

PBE population balance equation

VIM variational iteration method

Greek letters

Plv/u)dv  fractional number of particles formed in the size
range v to v+dv for medupon breakup of particle
of volume u, [-]

I'(v) number of particles in the size range v to
v+dv disappearing per unit time by breakup, T

av,u) aggregation frequency between two particles of

volumes v and u, [L3T’1]
Pochhammer [a,n]=I"(a+n)/T"(a)

formed by breakage, aggregation, growth and could be written as
a follows(Randolph and Larson 1988):

() =) 8[“;1"(”] _p(v) &

a

Where n(v) is the density distribution of product stream and
7*(v) the density distribution of feed stream, the second term is
the convective flux along the particle internal coordinate with a
growth velocity G(v).

The term on the right hand side is the net rate of particle
generation by aggregation and breakage which is given by
(Hulburt and Katz 1964; Prasher 1987):

-T'(v) n(v)— J‘: o(v,u)n(v)n(u) du
p(v)=| + j "B/ ) T(u) n(u)du

+ % L: o(v—u,u)n(v) n(v—u)du

where ['(v) and @(v,u) are the breakage and aggregation

frequencies, respectively, and PO /u)dv is the breakage

function for the formation of particles in the size range v +dv
from a particle of size u. The first two terms on the right hand
side represent particle loss due to breakup and aggregation
followed by two terms which represent particle formation due to
breakup and aggregation.

Recently, these semi analytical techniques have been applied for
solving (PBEs) for batch and continuous flow particulate dynamic
processes (Hasseine et al. 2011; 2015a,b; Hasseine and Bart
2015). The objective of this paper is to solve certain forms of the
above equation and extend the VIM and HPM techniques to
derive the exact solutions of the steady state PBEs incorporating
breakage, aggregation, growth, and simultaneous breakage and
aggregation.

The rest of this paper is organized as follows. In Sections 2 and 3,
we give an analysis of the variational iteration and homotopy
perturbation methods. The analytical and numerical results for
the steady state equations using the variational iteration and

homotopy perturbation methods are presented in Section 4.
Finally, we give our conclusions in Section 5.

2. The variational iteration method

To introduce the basic ideas of the variational iteration method
(VIM), we consider the following differential equation:

Lu+ Nu = g(t) (3)

Where L is a linear operator, N a nonlinear operator and g(?) a
source term. According to the VIM, we can write down a
correction functional as follows:

Um(t)=Un(t)+J‘0/1(LUn(§)+NU,,(sZ)—g(f))a’eC (4)
Where A is a general Lagrangian multiplier which can be
identified optimally via the variational theory and U, is a

restricted variation which means &7":0 (He. 1998a,b).

Consequently, the solution is given by y = lim, U, .

n

In the case of the steady state integral equations as given by
Eqg.(1), and since the Lagrange multiplier A plays an essential role
in applying the VIM method, we should differentiate both sides
of this equation to obtain an equivalent integro-differential
equation and consequently applying this method in a similar
manner as discussed above.

3. He’s Homotopy perturbation method
To explain this method, let us consider the following function:
Aw)+ f(r)=0,reQ (5)

with boundary conditions
B(u,a—u) =0,re0Q (6)
on

where A is a general differential operator, B a boundary
operator, f{r) is a known analytical function and 0 Q is the

boundary of the domain Q. Eq. (5) can be rewritten as
L)+ N(@u)- f(r)=0 (7)

According to the HPM, we construct a homotopy as follows
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H(v;p)=L(v)— L(uy) + pL(uy) + p(N(v) - f(r)) =0
or (8)
H(v;p)=(1-p)L()—Luy)]+ plAW) - f(r)]=0

Where r € Q and p € [0,1] is an embedding parameter, 1 is an
initial approximation which satisfies the boundary conditions.
Obviously, from Eq. (8), we have

H(v,0)= L(v) ~ L(uy) =0 (9)

Hw,1)=AW)- f(r)=0 (10)

The changing process of p from zero to unity is just that of vr,p)
from u, to u(r). In topology, this called deformation, L(v)—L(uy)
and L(v)—-N(v)—f(r) are homotopic. The basic assumption is that
the solution of Eq.(8) can be expressed as a power series in p:

V=V, + py + piv, e (11)

The approximate solution of Eqg. (5), therefore, can be readily
obtained:

u=limlv:vo+v,+v2+~-- (12)

P
4. lllustrative Examples

In all the following case studies, we will apply the variational
iteration method and the homotopy perturbation method to
solve the steady state population balance equation, and present
the analytical and numerical results to verify the effectiveness of
both methods.

4.1. Aggregation only with ®=m,=1

Consider the steady state problem in the continuous system as
given by Eq.(1) with o=wy=1:

[n(v) —n" ()]

a

= %J.Ovn(v —u) n(v) du -'f:n(u)n(v)du (13)

4.1.1. Homotopy perturbation method

To solve the Eq. (13) by the HPM, we can construct the following
homotopy:

hp = (1= p)n()=n,W]+p[ n(v)—n" ()

a v d © d (14’)
_EJ.“ n(v—u)n(v)du + aL n(u)n(v)du |
with the initial distribution is assumed as follows:
n,=n*(v)=e" (15a)

Substituting Eq. (11) into Eq. (14) and equating the coefficients of
p with the same power, one gets

n(v) = % jo no(u)ny(—u +v)du —a j: 1y (u)ny (v)du (15b)

n,(v) = %j:no(—u +v)n, (u)du + %jno(u)nl(—u +v)du

(15c¢)

© ©

- ajno(v)nl(u)du - ajno(u)nl(v)du

n, (v) = ﬁj'ov n (u)n,(—u +v)du + %J.Ovn2 (w)n,(—u+v)du

2
+ %L}vnz (—u+v)ny(u)du - aJ.: n, (u)n,(v)du

- a‘[: ny(V)n, (u)du — a‘[: ny(u)n,(v)du

73

(15d)

The corresponding solutions for the above system of equations

are the series solution which is given as:

o1 ,
n(v)=—ae "’ + Eae’”v

5 15, 5 5 5
nS(v) =-=d'e’ +—d’e ‘v—za3e v +4—8a3e

4.1.2. Variational iteration method

vy

3

(16a)

(16b)

(16c)

We apply variational iteration method to Eq. (13) where its

iteration formula reads

n, (&) =n"(&)

a v 5
nnﬂ(v):nm(v)—gl —%.([a)onm@—u)nm(u)du

+aJ. w,n, (u)nm (&)du

0

dg

(17)

Substituting Eq. (15a) into Eq. (17), we have the following results

_ _ 1,
n(v)=e’ —ae vV+Eae "y

+| —d’e” —=d’e™ vz+ia3e’vv3
4 4 48
e’ —ae”’ +%aze Vo dle +—a'e”
—-Zae” laée ' —La7e'”
8 16 16
1 3
—ae”’ —=a*e” +£a3 -
2 4
s 45 21 ’
D e e P e 2 e g
4 16 16
s (V) - laze’v —ia3e"’ +Ea4e’” -
" fs 35 v
P e 22 e — e
8 32 32
5 5
—de ——a'e +—da'e”
+ 48 16 32 Vo
35 6 _—v 35 7 _—v
- + a'e
96 384

(18a)

(18b)

(18c)
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The general term for the two methods is:

lm v (&)’”m Pochhammer[%,—l +m]

J1+2a T[m] L+ m]

n,(v) =

According tou =limn=n,+n +n,+---, the exact solution is
p—l

given by:

7(l+a)\' _ _
e 1+2a I(J ay + Il ay
1+ 2a 1+ 2a

J1+2a

n(v) = (20)
where lp(v) and I;(v) are modified Bessel Functions of the first
kind of zero and first orders.

The above analytical solution is the same as that derived by
(Hounslow 1990) using the Laplace transform methods.

In Fig. 1, the analytical solutions for the number density function
n(v) predicted at steady state from Eq. (20) and using both VIM
and HPM are compared for three different values of residence
time (i.e., a=10, 10° and 105). It is clear that the analytical results
are in excellent agreement with each other. A similar behavior
has been observed by (Hounslow 1990) for the case of pure
aggregation from a feed exponential density function.

4.2. Breakage with T'(v)=v and 8 (v/u)=2/u

In this section we consider the steady state problem in the

continuous system with linear breakage frequency - o) and a

=v
uniform daughter particle distribution £ (v/u)=2/u where Eq.(1) is
reduced to:

() =" ) _

; —-v n(v)+2j~v n(u)du (21)

as in the aggregation problem, the exponential initial distribution
was used.
4.2.1. Homotopy perturbation method

In order to solve the Eq. (28) by HPM, we can construct the
following homotopy:

0.1

0.01

= e

0.001

10 -4

Number density [L®]

10 -3

104 00l
Particle volume [L3]

Fig. 1. Comparison between the VIM and HPM and the analytical solution

(Hounslow 1990) for particle aggregation in a homogeneous flow vessel
with uniform daughter particle distribution and linear breakage rate. The
analytical solution is exactly identical to those obtained by VIM and HPM.

n(v)—n™(v) - Za'f:on(u)du

hp =(1-p)n»)-n,v)+p (22)

+av n(v)

Substituting Eq. (11), into Eg. (22) and rearranging based on
powers of p-terms, one gets

n,(v) =—avn,(v) + ar2n0 (v)dv (23a)
n,(v) =—avn,(v) + aJ‘:OZnI (v)dv (23b)
n,(v) =—avn,(v) + aJ’:’mZn2 (v)dv (23¢c)

the corresponding solutions for the above system of equations
are the series solution which is given as

n(v)=2ae”" —ae'v (24a)
n,(v) = 2a°e” —4a’e”v +ate "V (24b)
n,(v) = —6a’e"v+6a’eV —ale™V’ (24c)

4.2.2. Variational iteration method

We apply variational iteration method to Eq. (28) where its
iteration formula reads

ol e n, (&) —n"(&)
(9 =1, () = [ dé (25)

°| =24 n,, ()du + agn, (&)

substituting Eq. (15a) into Eq. (25), we have the following results:

n(v)=e"+2ae" —ae'v (26a)

n,(v)=e"’ +2ae” +2da’e” —ae'v—4da‘ev+a‘e "V (26b)
— 2 —v 2 2 v _ —v —4 2 _-v

ny(v)=e " +2ae" +2a’e’ —ae'v—4a‘ev (26¢)

3 -v 2 —v. 2 3 —v. 2 3 -v.3
—6a’e'v+aev +6a’ev —a’e"v

Finally, we calculate the general term from the series solution
given by the two methods (A) and (B) as follows:

el (=an)"(2-3m+ m? +2v—2mv+v?)

n,(v)= (27)
ayv

SO

) e (1 +2a(1+v)+ a2+ 2v+ vz)) 08)

1+ av)’

The above analytical solution is the same as that given by
(Nicmanis and Hounslow 1998; Attarakih et al. 2004).

In Figure 2, the steady-state distributions calculated by the VIM
and HPM are compared with the corresponding analytical given
by (Nicmanis and Hounslow1998; Attarakih et al. 2004) for
different values of the mean residence time (i.e. a=10, 10® and
10°). It is obvious that there is an excellent agreement between
the three analytical solutions.
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Number density [L]

104 001 1 100
Particle volume [L3]

Fig. 2. Comparison between the VIM and HPM and the analytical solution
(Nicmanis and Hounslow 1998; Attarakih et al. 2004) for particle breakage
in a homogeneous flow vessel with uniform daughter particle distribution
and linear breakage rate. The analytical solution is exactly identical to
those obtained by VIM and HPM.

4.3. Growth only with G=1

We consider the initial value problem in the continuous flow
system as with only particle growth involving constant growth
rate G=1 which can be obtained from Eq.(1):

W) =1 0) _GH()]
a ov

=0 (29)

4.3.1. Homotopy perturbation method
In order to solve the Eqg. (42) by the HPM, we can construct the

following homotopy:

aAGn(v)]
ov

n(v)— nfed ») N

hp = (1= p)(n(v) = n,(v)) + p( ) (30)

With initial distribution
ny(vy=—e"/a (31q)

Substituting Eq. (11) in Eq. (30) and equating the coefficients of
like powers of p, gives the following set of equations:

rn(vydv 1 e
= (310)
n(v)dv I e’ v
S (1)
0
tn,(Wdv 1 e’ v P
e AT i

0
4.3.2. Variational iteration method

Now we apply the variational iteration method to Eq. (42) with
the following iteration formula:

n(&)- n’“d(@ 0[Gn(f§)]] a 2)

ny () =n,0) = | ( 52

By substituting Eq. (31a) into Eqg. (32), one gets the following
results:

n(v)=e"’ (_—171]+L2 (33a)
a a) a
-1 1 1 %
nz(v)ze (?—?—;)+?+az ? (33b)
-1 01 1 1 1 1 1
m)=e'| G- -—m-— |ttt
a a a a) a a a
(33¢)

Accordingly, the general series term of the two methods (A) and
(B) is given as follows:

" (v) = a(-v/a)" o lj (34)

(=14 a)v Pochhammer[l,—1 + m] - [ a

Then the closed form of the solution can be written as

— N _ a(—v/a)’" o l m+1
n(V)_mZ:;) (—1+a)vP0chhammer[1,—l+m] € (a] (35)

with the exact solution as:

v(-1+a)

n(v)= ev[—l +e ¢

]/(—1+a) (36)

In Figure 3, a comparison is made between the exact solutions of
Eq. (29) obtained by both VIM and HPM for the case of
constant growth rate (G = 1) for different values of the mean
residence time (i.e.,a=10, 10° and 105). The solutions are in good
agreement with each other.

4.4. Simultaneous breakage and aggregation

In this case, the analytical solution for steady state continuous
flow system is not available in the open published literature. This
case represents a combination of linear breakage rate I'(v)=v, a
particle distribution S (v/u)=2/u
constant aggregation kernel ®w(v,u)=1 and an exponential feed

uniform binary daughter

distribution. Using these functions Eq.(1) can be simplified into
the following continuous PBE:

0.001

10-3

Number density [L®]
S
L

104 001 1 100
Particle volume [L3]

Fig. 3. Comparison between the VIM and HPM for particle growth in a
homogeneous flow vessel.
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-T(v) n(v) - j: o, u)n(v) n(u)du
W= |, [7 A1) T@n(u)du (37)

+%J.Ova)(v —u,u) n(v) n(v—u)du

The application of the homotopy perturbation method to Eq. (37)
results in the following formula:

n(v) —n™(v) - 2aj'jn(u)du

hp =(1- p)(n(v) —ny(v)) + p| +av n(v) - %J'Ovn(v —u)n(v)du | (38)

+ajn(u)n(v)du

Now by assuming that the solution of Eq. (55) is in the form:
n(v) = pny(V)+ p'm (V) + p’n, (V) + p'n, (V) + p'n, ()., (39)
and substituting (57) into (56) and collecting terms of the same

power of p one finds:

—J‘a0 2n,(u)du + J.: ny(u)n,(v)du
mm=- (40a)

—'[(:%no (w)n,(—u +v)du + vny(v)

—J.:C 2n,(u)du + I:(no (w)n,(v) + nny(u)n, (v))du

() = —f;’[%no(—u+v>n1<u>+§no(u>nl(—u+v)jdu (40b)

+vn, (v)

7.[:0 2n,(u)du
+J.:(n1(u)n1 V) +ny(V)n, (u) + no(u)nz(v))du

ny(v) =— ln1 (w)n,(—u+v)+ lno(fu +v)n,(u) (40c)
_J‘" 2 2 du

Jr%nO (u)n,(—u+v)

+vn, (v)

[anaf)| DA RORO)
v 0 +P3J’0(V)J’3(”)+P3y0(u)y3(v)

, lnl(—u +v)n, (u) + lnl(u)nz(—u +v)
n,(v)=- *J(: 2 | 2 1 du (40d)
+En0(—u +v)n,(u) + Eno(u)n3(—u +v)

+vn,y (v)

The solution of the above equations yields:

(41a)

(41b)

200 |
1.00

050 -

020

Number density [L]

0.10

005 -

005 010 050 1.00 . 5.00

Particle volume [L3]

Fig.4. The approximate solution for simultaneous aggregation and
breakage in continuous flow vessel with exponential feed distribution.

e’ ev 1 _,
}’lz(V):—T—T-FZe 2 (41C)
e’ Sev 1 .
n3(v)=77 4 Z V2 *—86 V3 (41C|)
13¢™ , , 1
n,(v) = 3¢ —ie’” ’ —ie’Vv3 +—9 evt (41e)

v
8 2 16 192

Similarly, the rest of components of the HPM formulation Eq.
(38)can be obtained.

Note that the first four-term approximation to the solution of Eq.
(37) are derived by setting p =1 in Eq. (39).

The solution in a series form is given by

21e™ - , 1, 9 _,
e Y LAy (42)

n(v)=

Fig. 4 shows the approximate solution obtained by the HPM for
the case of simultaneous aggregation and breakage in a

continuous flow system.
5. Conclusions

In this work, the homotopy perturbation and variational iteration
methods are successfully applied for solving the population
balance equation in continuous flow systems at steady state with
particle aggregation, breakage, growth, and simultaneous
aggregation and breakage. The two methods are very powerful
mathematical tools and provide an efficient analytical technique
to obtain some exact solutions of the steady state population
balance equations with given breakage, aggregation and growth
functions. It is concluded that these proposed methods produced
identical analytical solutions with varying degree of difficulties
depending on the particle interaction functions. The homotopy
perturbation method can be introduced to overcome the
limitations and difficulties existing in other approximate methods
such as the ADM or construction of correction functionals using
general Lagrange’s multipliers in the VIM. Also, these methods
can be applied to problems arising in different fields of science
and engineering specially those of continuous flow particulate

processes.
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